enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Denaturation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Denaturation_(biochemistry)

    In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]

  3. Glucose - Wikipedia

    en.wikipedia.org/wiki/Glucose

    Glucose circulates in the blood of animals as blood sugar. [5] [7] The naturally occurring form is d-glucose, while its stereoisomer l-glucose is produced synthetically in comparatively small amounts and is less biologically active. [7] Glucose is a monosaccharide containing six carbon atoms and an aldehyde group, and is therefore an aldohexose ...

  4. Polysaccharide - Wikipedia

    en.wikipedia.org/wiki/Polysaccharide

    Starch (a polymer of glucose) is used as a storage polysaccharide in plants, being found in the form of both amylose and the branched amylopectin. In animals, the structurally similar glucose polymer is the more densely branched glycogen, sometimes called "animal starch". Glycogen's properties allow it to be metabolized more quickly, which ...

  5. Protein metabolism - Wikipedia

    en.wikipedia.org/wiki/Protein_metabolism

    They can also be converted into glucose. [4] This glucose can then be converted to triglycerides and stored in fat cells. [5] Proteins can be broken down by enzymes known as peptidases or can break down as a result of denaturation. Proteins can denature in environmental conditions the protein is not made for. [6]

  6. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    Glycogen is a highly branched structure, consisting of the core protein Glycogenin, surrounded by branches of glucose units, linked together. [ 2 ] [ 12 ] The branching of glycogen increases its solubility, and allows for a higher number of glucose molecules to be accessible for breakdown at the same time. [ 2 ]

  7. Gluconeogenesis - Wikipedia

    en.wikipedia.org/wiki/Gluconeogenesis

    Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. [1]

  8. Cell biology - Wikipedia

    en.wikipedia.org/wiki/Cell_biology

    The chaperone-mediated autophagy (CMA) protein quality assurance by digesting oxidized and altered proteins under stressful circumstances and supplying amino acids through protein denaturation. [39] Autophagy is the primary intrinsic degradative system for peptides, fats, carbohydrates, and other cellular structures.

  9. Glycogenolysis - Wikipedia

    en.wikipedia.org/wiki/Glycogenolysis

    This exposes the α[1→6] branching point, which is hydrolysed by α[1→6] glucosidase, removing the final glucose residue of the branch as a molecule of glucose and eliminating the branch. This is the only case in which a glycogen metabolite is not glucose-1-phosphate. The glucose is subsequently phosphorylated to glucose-6-phosphate by ...