Search results
Results from the WOW.Com Content Network
A graph with a loop on vertex 1. In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing ...
Each vertex is assigned to a parallel entity. This vertex centric approach might only work well if the graph depth is very low. Graph depth in BFS is defined as the maximum distance of any vertex in the graph to the source vertex. Therefore, the vertex centric approach is well-suited for GPUs if every thread is mapped to exactly one vertex. [3]
One may recover the surface itself by gluing a topological disk to the ribbon graph along each boundary component. The partition of the surface into vertex disks, edge disks, and face disks given by the ribbon graph and this gluing process is a different but related representation of the embedding called a band decomposition. [5] The surface ...
That is, it consists of vertices and edges (also called arcs), with each edge directed from one vertex to another, such that following those directions will never form a closed loop. A directed graph is a DAG if and only if it can be topologically ordered, by arranging the vertices as a linear ordering that is consistent with all edge ...
In an empty graph, each vertex forms a component with one vertex and zero edges. [3] More generally, a component of this type is formed for every isolated vertex in any graph. [4] In a connected graph, there is exactly one component: the whole graph. [4] In a forest, every component is a tree. [5] In a cluster graph, every component is a ...
Then one endpoint of edge e is in set V and the other is not. Since tree Y 1 is a spanning tree of graph P, there is a path in tree Y 1 joining the two endpoints. As one travels along the path, one must encounter an edge f joining a vertex in set V to one that is not in set V.
In network science, the Configuration Model is a family of random graph models designed to generate networks from a given degree sequence. Unlike simpler models such as the ErdÅ‘s–Rényi model, Configuration Models preserve the degree of each vertex as a pre-defined property. This flexibility allows the modeler to construct networks with ...
The two queries partition the vertex set into 4 subsets: vertices reached by both, either one, or none of the searches. One can show that a strongly connected component has to be contained in one of the subsets. The vertex subset reached by both searches forms a strongly connected component, and the algorithm then recurses on the other 3 subsets.