Search results
Results from the WOW.Com Content Network
As a read-only operation the traversal of an AVL tree functions the same way as on any other binary tree. Exploring all n nodes of the tree visits each link exactly twice: one downward visit to enter the subtree rooted by that node, another visit upward to leave that node's subtree after having explored it.
AA tree; AVL tree; Binary search tree; Binary tree; Cartesian tree; Conc-tree list; Left-child right-sibling binary tree; Order statistic tree; Pagoda; Randomized binary search tree; Red–black tree; Rope; Scapegoat tree; Self-balancing binary search tree; Splay tree; T-tree; Tango tree; Threaded binary tree; Top tree; Treap; WAVL tree; Weight ...
In 2016, Blelloch et al. formally proposed the join-based algorithms, and formalized the join algorithm for four different balancing schemes: AVL trees, red–black trees, weight-balanced trees and treaps. In the same work they proved that Adams' algorithms on union, intersection and difference are work-optimal on all the four balancing schemes.
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.
The worst-case height of AVL is 0.720 times the worst-case height of red-black trees, so AVL trees are more rigidly balanced. The performance measurements of Ben Pfaff with realistic test cases in 79 runs find AVL to RB ratios between 0.677 and 1.077, median at 0.947, and geometric mean 0.910. [22] The performance of WAVL trees lie in between ...
This unsorted tree has non-unique values (e.g., the value 2 existing in different nodes, not in a single node only) and is non-binary (only up to two children nodes per parent node in a binary tree). The root node at the top (with the value 2 here), has no parent as it is the highest in the tree hierarchy.
The depth of a tree is the maximum depth of any vertex. Depth is commonly needed in the manipulation of the various self-balancing trees, AVL trees in particular. The root has depth zero, leaves have height zero, and a tree with only a single vertex (hence both a root and leaf) has depth and height zero.
The weak AVL tree is defined by the weak AVL rule: Weak AVL rule: all rank differences are 1 or 2, and all leaf nodes have rank 0. Note that weak AVL tree generalizes the AVL tree by allowing for 2,2 type node. A simple proof shows that a weak AVL tree can be colored in a way that represents a red-black tree.