Search results
Results from the WOW.Com Content Network
For the commonly utilized half-wave dipole, the particular formulation works out to the following, including its decibel equivalency, expressed as dBi (decibels referenced to isotropic radiator): R λ 2 = 60 Cin ( 2 π ) = 60 [ ln ( 2 π ) + γ − Ci ( 2 π ) ] = 120 ∫ 0 π 2 cos ( π 2 cos θ ) 2 sin θ d θ , = 15 ...
For very low-power systems, such as mobile phones, signal strength is usually expressed in dB-microvolts per metre (dBμV/m) or in decibels above a reference level of one milliwatt . In broadcasting terminology, 1 mV/m is 1000 μV/m or 60 dBμ (often written dBu).
(dB) ≈ 36.6 dB + 20 log10[frequency (MHz)] + 20 log10[distance (miles)] These alternative forms can be derived by substituting wavelength with the ratio of propagation velocity ( c , approximately 3 × 10 8 m/s ) divided by frequency, and by inserting the proper conversion factors between km or miles and meters, and between MHz and (1/s).
The ideal dipole antenna could be further replaced by an isotropic radiator (a purely mathematical device which cannot exist in the real world), and the receiver cannot know the difference so long as the input power is increased by 2.15 dB. The distinction between dB d and dB i is often left unstated and the reader is sometimes forced to infer ...
The decibel originates from methods used to quantify signal loss in telegraph and telephone circuits. Until the mid-1920s, the unit for loss was miles of standard cable (MSC). 1 MSC corresponded to the loss of power over one mile (approximately 1.6 km) of standard telephone cable at a frequency of 5000 radians per second (795.8 Hz), and matched closely the smallest attenuation detectable to a ...
A minimum detectable signal is a signal at the input of a system whose power allows it to be detected over the background electronic noise of the detector system. It can alternately be defined as a signal that produces a signal-to-noise ratio of a given value m at the output.
In a wireless communication system, the link margin (LKM) is a critical parameter that measures the reliability and robustness of the communication link. It is expressed in decibels and represents the difference between the minimum expected power received at the receiver's end and the receiver's sensitivity.
In telecommunications, the free-space path loss (FSPL) (also known as free-space loss, FSL) is the attenuation of radio energy between the feedpoints of two antennas that results from the combination of the receiving antenna's capture area plus the obstacle-free, line-of-sight (LoS) path through free space (usually air). [1]