Search results
Results from the WOW.Com Content Network
It is a general-purpose learner and its ability to perform the various tasks was a consequence of its general ability to accurately predict the next item in a sequence, [2] [7] which enabled it to translate texts, answer questions about a topic from a text, summarize passages from a larger text, [7] and generate text output on a level sometimes ...
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.
The dataset consists of around 985 million words, and the books that comprise it span a range of genres, including romance, science fiction, and fantasy. [ 3 ] The corpus was introduced in a 2015 paper by researchers from the University of Toronto and MIT titled "Aligning Books and Movies: Towards Story-like Visual Explanations by Watching ...
Some examples of commonly used question answering datasets include TruthfulQA, Web Questions, TriviaQA, and SQuAD. [126] Evaluation datasets may also take the form of text completion, having the model select the most likely word or sentence to complete a prompt, for example: "Alice was friends with Bob. Alice went to visit her friend, ____". [1]
GPT-2, a text generating model developed by OpenAI Topics referred to by the same term This disambiguation page lists articles associated with the same title formed as a letter–number combination.
Above: An image classifier, an example of a neural network trained with a discriminative objective. Below: A text-to-image model, an example of a network trained with a generative objective. Since its inception, the field of machine learning used both discriminative models and generative models, to model and predict data.
The Pile is an 886.03 GB diverse, open-source dataset of English text created as a training dataset for large language models (LLMs). It was constructed by EleutherAI in 2020 and publicly released on December 31 of that year. [1] [2] It is composed of 22 smaller datasets, including 14 new ones. [1]
Natural language generation (NLG) is a software process that produces natural language output. A widely-cited survey of NLG methods describes NLG as "the subfield of artificial intelligence and computational linguistics that is concerned with the construction of computer systems that can produce understandable texts in English or other human languages from some underlying non-linguistic ...