Search results
Results from the WOW.Com Content Network
Heron's formula is a special case of Brahmagupta's formula for the area of a cyclic quadrilateral. Heron's formula and Brahmagupta's formula are both special cases of Bretschneider's formula for the area of a quadrilateral. Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the ...
In geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. [ 1 ] [ 2 ] Heronian triangles are named after Heron of Alexandria , based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84 .
This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.
Various methods may be used in practice, depending on what is known about the triangle. Other frequently used formulas for the area of a triangle use trigonometry, side lengths (Heron's formula), vectors, coordinates, line integrals, Pick's theorem, or other properties. [3]
Download as PDF; Printable version; In other projects Appearance. move to sidebar hide. From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Heron's ...
A Heronian tetrahedron [1] (also called a Heron tetrahedron [2] or perfect pyramid [3]) is a tetrahedron whose edge lengths, face areas and volume are all integers. The faces must therefore all be Heronian triangles (named for Hero of Alexandria ).
In geometry, he discovered "Qin Jiushao's formula" for finding the area of a triangle from the given lengths of three sides. This formula is the same as Heron's formula , proved by Heron of Alexandria about 60 BCE, though knowledge of the formula may go back to Archimedes .
Brahmagupta (c. 598 – c. 668 CE) was an Indian mathematician and astronomer.He is the author of two early works on mathematics and astronomy: the Brāhmasphuṭasiddhānta (BSS, "correctly established doctrine of Brahma", dated 628), a theoretical treatise, and the Khandakhadyaka ("edible bite", dated 665), a more practical text.