Search results
Results from the WOW.Com Content Network
The th principal eigenvector of a graph is defined as either the eigenvector corresponding to the th largest or th smallest eigenvalue of the Laplacian. The first principal eigenvector of the graph is also referred to merely as the principal eigenvector.
The k-th principal component of a data vector x (i) can therefore be given as a score t k(i) = x (i) ⋅ w (k) in the transformed coordinates, or as the corresponding vector in the space of the original variables, {x (i) ⋅ w (k)} w (k), where w (k) is the kth eigenvector of X T X. The full principal components decomposition of X can therefore ...
In general, an eigenvector of a linear operator D defined on some vector space is a nonzero vector in the domain of D that, when D acts upon it, is simply scaled by some scalar value called an eigenvalue. In the special case where D is defined on a function space, the eigenvectors are referred to as eigenfunctions.
Let = be an positive matrix: > for ,.Then the following statements hold. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue (also called the leading eigenvalue, principal eigenvalue or dominant eigenvalue), such that r is an eigenvalue of A and any other eigenvalue λ (possibly complex) in absolute value is strictly smaller than r, |λ| < r.
The principal components: gives a spectral decomposition of where = [, …,] = [, …,] = with denoting the non-negative eigenvalues (also known as the principal values) of , while the columns of denote the corresponding orthonormal set of eigenvectors.
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
The eigenvectors of A −1 are the same as the eigenvectors of A. Eigenvectors are only defined up to a multiplicative constant. That is, if Av = λv then cv is also an eigenvector for any scalar c ≠ 0. In particular, −v and e iθ v (for any θ) are also eigenvectors.
Hence PageRank is the principal eigenvector of ^. A fast and easy way to compute this is using the power method : starting with an arbitrary vector x ( 0 ) {\displaystyle x(0)} , the operator M ^ {\displaystyle {\widehat {\mathcal {M}}}} is applied in succession, i.e.,