enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. RNA - Wikipedia

    en.wikipedia.org/wiki/RNA

    Structure of a hammerhead ribozyme, a ribozyme that cuts RNA. Messenger RNA (mRNA) is the type of RNA that carries information from DNA to the ribosome, the sites of protein synthesis (translation) in the cell cytoplasm. The coding sequence of the mRNA determines the amino acid sequence in the protein that is produced. [27]

  3. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    Nucleic acid structure refers to the structure of nucleic acids such as DNA and RNA. Chemically speaking, DNA and RNA are very similar. Chemically speaking, DNA and RNA are very similar. Nucleic acid structure is often divided into four different levels: primary, secondary, tertiary, and quaternary.

  4. Ribosomal RNA - Wikipedia

    en.wikipedia.org/wiki/Ribosomal_RNA

    The tertiary structure of the small subunit ribosomal RNA (SSU rRNA) has been resolved by X-ray crystallography. [33] The secondary structure of SSU rRNA contains 4 distinct domains—the 5', central, 3' major and 3' minor domains. A model of the secondary structure for the 5' domain (500-800 nucleotides) is shown.

  5. Messenger RNA - Wikipedia

    en.wikipedia.org/wiki/Messenger_RNA

    5' cap structure. A 5' cap (also termed an RNA cap, an RNA 7-methylguanosine cap, or an RNA m 7 G cap) is a modified guanine nucleotide that has been added to the "front" or 5' end of a eukaryotic messenger RNA shortly after the start of transcription. The 5' cap consists of a terminal 7-methylguanosine residue that is linked through a 5'-5 ...

  6. Ribozyme - Wikipedia

    en.wikipedia.org/wiki/Ribozyme

    3D structure of a hammerhead ribozyme. Ribozymes (ribonucleic acid enzymes) are RNA molecules that have the ability to catalyze specific biochemical reactions, including RNA splicing in gene expression, similar to the action of protein enzymes.

  7. Nucleic acid tertiary structure - Wikipedia

    en.wikipedia.org/.../Nucleic_acid_tertiary_structure

    Two important functions are the binding potential with ligands or proteins, and its ability to stabilize the whole tertiary structure of DNA or RNA. The strong structure can inhibit or modulate transcription and replication, such as in the telomeres of chromosomes and the UTR of mRNA. [18] The base identity is important towards ligand binding.

  8. Nucleic acid quaternary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_quaternary...

    Small nuclear RNA combines with proteins to form the spliceosome in the nucleus. The spliceosome is responsible for sensing and cutting introns out of pre-mRNA, which is one of the first steps of mRNA processing. The spliceosome is a large macromolecular complex. Quaternary structure allows snRNA to detect mRNA sequences that need to be excised.

  9. Biomolecular structure - Wikipedia

    en.wikipedia.org/wiki/Biomolecular_structure

    The primary structure of a biopolymer is the exact specification of its atomic composition and the chemical bonds connecting those atoms (including stereochemistry).For a typical unbranched, un-crosslinked biopolymer (such as a molecule of a typical intracellular protein, or of DNA or RNA), the primary structure is equivalent to specifying the sequence of its monomeric subunits, such as amino ...