Search results
Results from the WOW.Com Content Network
[168] [169] Missions to Jupiter are accomplished at a cost in energy, which is described by the net change in velocity of the spacecraft, or delta-v. Entering a Hohmann transfer orbit from Earth to Jupiter from low Earth orbit requires a delta-v of 6.3 km/s, [170] which is comparable to the 9.7 km/s delta-v needed to reach low Earth orbit. [171]
Average distance from Earth (which the Apollo missions took about 3 days to travel) — Solar radius: 0.005 — Radius of the Sun (695 500 km, 432 450 mi, a hundred times the radius of Earth or ten times the average radius of Jupiter) — Light-minute: 0.12 — Distance light travels in one minute — Mercury: 0.39 — Average distance from the ...
The Jupiter radius or Jovian radius (R J or R Jup) has a value of 71,492 km (44,423 mi), or 11.2 Earth radii (R 🜨) [2] (one Earth radius equals 0.08921 R J). The Jupiter radius is a unit of length used in astronomy to describe the radii of gas giants and some exoplanets. It is also used in describing brown dwarfs.
The column labeled "v exiting LEO" gives the velocity needed (in a non-rotating frame of reference centred on Earth) when 300 km above Earth's surface. This is obtained by adding to the specific kinetic energy the square of the speed (7.73 km/s) of this low Earth orbit (that is, the depth of Earth's gravity well at this LEO).
In astrodynamics, canonical units are defined in terms of some important object’s orbit that serves as a reference. In this system, a reference mass, for example the Sun’s, is designated as 1 “canonical mass unit” and the mean distance from the orbiting object to the reference object is considered the “canonical distance unit”.
Just one day before opposition, Jupiter will be around 367 million miles away from the Earth, the closest the two planets have been in 59 years, according to NASA. The last time that Jupiter was ...
For example, as the Earth's rotational velocity is 465 m/s at the equator, a rocket launched tangentially from the Earth's equator to the east requires an initial velocity of about 10.735 km/s relative to the moving surface at the point of launch to escape whereas a rocket launched tangentially from the Earth's equator to the west requires an ...
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.