Search results
Results from the WOW.Com Content Network
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
function Depth-Limited-Search-Backward(u, Δ, B, F) is prepend u to B if Δ = 0 then if u in F then return u (Reached the marked node, use it as a relay node) remove the head node of B return null foreach parent of u do μ ← Depth-Limited-Search-Backward(parent, Δ − 1, B, F) if μ null then return μ remove the head node of B return null
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.
Animated example of a breadth-first search. Black: explored, grey: queued to be explored later on BFS on Maze-solving algorithm Top part of Tic-tac-toe game tree. Breadth-first search (BFS) is an algorithm for searching a tree data structure for a node that satisfies a given property.
Shape analysis of linked list data structures is a technique for verifying the correctness of an algorithm using those structures. If a node in the list incorrectly points to an earlier node in the same list, the structure will form a cycle that can be detected by these algorithms. [25]
The function strongconnect performs a single depth-first search of the graph, finding all successors from the node v, and reporting all strongly connected components of that subgraph. When each node finishes recursing, if its lowlink is still set to its index, then it is the root node of a strongly connected component, formed by all of the ...
This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.
An efficient implementation using a disjoint-set data structure can perform each union and find operation on two sets in nearly constant amortized time (specifically, (()) time; () < for any plausible value of ), so the running time of this algorithm is essentially proportional to the number of walls available to the maze.