Search results
Results from the WOW.Com Content Network
Brittle materials have low toughness as a result of the small amount of plastic deformation they can endure at any rate. However, ductile materials may behave like brittle materials under high-energy impact, hence the need for this kind of test. The test conditions are governed by many variables, most importantly:
Although single layer polycarbonate sheeting is more flexible than polycarbonate in twinwall configuration, it still retains significant advantages over alternative materials, including glass. A typical 6mm sheet has a density of 0.72 g/cm^2 [ 6 ] and a thermal insulation R value of 0.3 m^2°C/W, while allowing 80% of visible light pass through ...
Polycarbonate is commonly used in eye protection, as well as in other projectile-resistant viewing and lighting applications that would normally indicate the use of glass, but require much higher impact-resistance. Polycarbonate lenses also protect the eye from UV light.
Cracks cannot easily propagate in tough materials, making metals highly resistant to cracking under stress and gives their stress–strain curve a large zone of plastic flow. Ceramics have a lower fracture toughness but show an exceptional improvement in the stress fracture that is attributed to their 1.5 orders of magnitude strength increase ...
Work hardening, also known as strain hardening, is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation. This characteristic is what sets ductile materials apart from brittle materials. [ 1 ]
The impact energies of high-strength materials other than steels or BCC transition metals are usually insensitive to temperature. High-strength BCC steels display a wider variation of impact energy than high-strength metal that do not have a BCC structure because steels undergo microscopic ductile-brittle transition. Regardless, the maximum ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
According to the classical theories of elastic or plastic structures made from a material with non-random strength (f t), the nominal strength (σ N) of a structure is independent of the structure size (D) when geometrically similar structures are considered. [1] Any deviation from this property is called the size effect.