enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    Thin, solid disk of radius r and mass m. ... The given formula is for the ... the object is a solid ball (above).

  3. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    Here, the function gives the mass density at each point (,,), is a vector perpendicular to the axis of rotation and extending from a point on the rotation axis to a point (,,) in the solid, and the integration is evaluated over the volume of the body . The moment of inertia of a flat surface is similar with the mass density being replaced by ...

  4. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    The fundamental equation describing the behavior of a rotating solid body is Euler's equation of motion: = = + = + = + where the pseudovectors τ and L are, respectively, the torques on the body and its angular momentum, the scalar I is its moment of inertia, the vector ω is its angular velocity, the vector α is its angular acceleration, D is ...

  5. Shell theorem - Wikipedia

    en.wikipedia.org/wiki/Shell_theorem

    This is done by integrating an infinitesimally thin spherical shell with mass of , and we can obtain the total gravity contribution of a solid ball to the object outside the ball F t o t a l = ∫ d F r = G m r 2 ∫ d M . {\displaystyle F_{total}=\int dF_{r}={\frac {Gm}{r^{2}}}\int dM.}

  6. Ball (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ball_(mathematics)

    In particular, a ball (open or closed) always includes p itself, since the definition requires r > 0. A unit ball (open or closed) is a ball of radius 1. A ball in a general metric space need not be round. For example, a ball in real coordinate space under the Chebyshev distance is a hypercube, and a ball under the taxicab distance is a cross ...

  7. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    The Euler equations can be generalized to any simple Lie algebra. [1] The original Euler equations come from fixing the Lie algebra to be s o ( 3 ) {\displaystyle {\mathfrak {so}}(3)} , with generators t 1 , t 2 , t 3 {\displaystyle {t_{1},t_{2},t_{3}}} satisfying the relation [ t a , t b ] = ϵ a b c t c {\displaystyle [t_{a},t_{b}]=\epsilon ...

  8. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Stated formally, in general, an equation of motion M is a function of the position r of the object, its velocity (the first time derivative of r, v = ⁠ dr / dt ⁠), and its acceleration (the second derivative of r, a = ⁠ d 2 r / dt 2 ⁠), and time t. Euclidean vectors in 3D are denoted throughout in bold.

  9. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]