enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    A non-recursive implementation of DFS with worst-case space complexity (| |), with the possibility of duplicate vertices on the stack: [6] procedure DFS_iterative(G, v) is let S be a stack S.push(v) while S is not empty do v = S.pop() if v is not labeled as discovered then label v as discovered for all edges from v to w in G.adjacentEdges(v) do ...

  3. Graph traversal - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.

  4. Breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Breadth-first_search

    If G is a tree, replacing the queue of this breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [10]

  5. Maze generation algorithm - Wikipedia

    en.wikipedia.org/wiki/Maze_generation_algorithm

    While the stack is not empty Pop a cell from the stack and make it a current cell; If the current cell has any neighbours which have not been visited Push the current cell to the stack; Choose one of the unvisited neighbours; Remove the wall between the current cell and the chosen cell; Mark the chosen cell as visited and push it to the stack

  6. Path-based strong component algorithm - Wikipedia

    en.wikipedia.org/wiki/Path-based_strong...

    The algorithm performs a depth-first search of the given graph G, maintaining as it does two stacks S and P (in addition to the normal call stack for a recursive function). Stack S contains all the vertices that have not yet been assigned to a strongly connected component, in the order in which the depth-first search reaches the vertices.

  7. Talk:Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Talk:Depth-first_search

    Heck, you could make the stack explicit in the recursive example by replacing "recursively call DFS(G,w)" with "stack.push(w); tailcall(DFS)" (or "goto top" if you prefer). What's there now is complicating things by changing the algorithm at the same time as it's changing where the stack is.

  8. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    Since IDDFS, at any point, is engaged in a depth-first search, it need only store a stack of nodes which represents the branch of the tree it is expanding. Since it finds a solution of optimal length, the maximum depth of this stack is d {\displaystyle d} , and hence the maximum amount of space is O ( d ) {\displaystyle O(d)} .

  9. Topological sorting - Wikipedia

    en.wikipedia.org/wiki/Topological_sorting

    The canonical application of topological sorting is in scheduling a sequence of jobs or tasks based on their dependencies.The jobs are represented by vertices, and there is an edge from x to y if job x must be completed before job y can be started (for example, when washing clothes, the washing machine must finish before we put the clothes in the dryer).