enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    If G is a tree, replacing the queue of the breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [7]

  3. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    a depth-first search starting at A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously-visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following order: A, B, D, F, E, C, G.

  4. Graph traversal algorithms - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.

  5. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    As a tree is a self-referential (recursively defined) data structure, traversal can be defined by recursion or, more subtly, corecursion, in a natural and clear fashion; in these cases the deferred nodes are stored implicitly in the call stack. Depth-first search is easily implemented via a stack, including recursively (via the call stack ...

  6. Iterative deepening A* - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_A*

    It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the remaining cost to get to the goal from the A* search algorithm. Since it is a depth-first search algorithm, its memory usage is lower than in A*, but unlike ordinary iterative deepening search, it ...

  7. Path-based strong component algorithm - Wikipedia

    en.wikipedia.org/wiki/Path-based_strong...

    The algorithm performs a depth-first search of the given graph G, maintaining as it does two stacks S and P (in addition to the normal call stack for a recursive function). Stack S contains all the vertices that have not yet been assigned to a strongly connected component, in the order in which the depth-first search reaches the vertices.

  8. Topological sorting - Wikipedia

    en.wikipedia.org/wiki/Topological_sorting

    An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):

  9. External memory graph traversal - Wikipedia

    en.wikipedia.org/wiki/External_memory_graph...

    Graph traversal is a subroutine in most graph algorithms. The goal of a graph traversal algorithm is to visit (and / or process) every node of a graph. Graph traversal algorithms, like breadth-first search and depth-first search, are analyzed using the von Neumann model, which assumes uniform memory access cost. This view neglects the fact ...