enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex Hermitian matrices means that we can express any Hermitian matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  3. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    Given a unit vector in 3 dimensions, for example (a, b, c), one takes a dot product with the Pauli spin matrices to obtain a spin matrix for spin in the direction of the unit vector. The eigenvectors of that spin matrix are the spinors for spin-1/2 oriented in the direction given by the vector. Example: u = (0.8, -0.6, 0) is a unit vector ...

  4. Generalizations of Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_Pauli...

    The traditional Pauli matrices are the matrix representation of the () Lie algebra generators , , and in the 2-dimensional irreducible representation of SU(2), corresponding to a spin-1/2 particle. These generate the Lie group SU(2) .

  5. Spin matrix - Wikipedia

    en.wikipedia.org/wiki/Spin_matrix

    The term spin matrix refers to a number of matrices, which are related to Spin ... Pauli matrices, also called the "Pauli spin matrices". Generalizations of Pauli ...

  6. Eigenspinor - Wikipedia

    en.wikipedia.org/wiki/Eigenspinor

    Suppose there is a spin 1/2 particle in a state = [].To determine the probability of finding the particle in a spin up state, we simply multiply the state of the particle by the adjoint of the eigenspinor matrix representing spin up, and square the result.

  7. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    For example, taking the Kronecker product of two spin-⁠ 1 / 2 ⁠ yields a four-dimensional representation, which is separable into a 3-dimensional spin-1 (triplet states) and a 1-dimensional spin-0 representation (singlet state). The resulting irreducible representations yield the following spin matrices and eigenvalues in the z-basis:

  8. Relativistic wave equations - Wikipedia

    en.wikipedia.org/wiki/Relativistic_wave_equations

    The first two-dimensional spin matrices (better known as the Pauli matrices) were introduced by Pauli in the Pauli equation; the Schrödinger equation with a non-relativistic Hamiltonian including an extra term for particles in magnetic fields, but this was phenomenological.

  9. Helicity basis - Wikipedia

    en.wikipedia.org/wiki/Helicity_basis

    The two-component helicity eigenstates satisfy ^ (^) = (^) where are the Pauli matrices, ^ is the direction of the fermion momentum, = depending on whether spin is pointing in the same direction as ^ or opposite.