enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proton–proton chain - Wikipedia

    en.wikipedia.org/wiki/Proton–proton_chain

    The proton–proton chain, also commonly referred to as the p–p chain, is one of two known sets of nuclear fusion reactions by which stars convert hydrogen to helium. It dominates in stars with masses less than or equal to that of the Sun , [ 2 ] whereas the CNO cycle , the other known reaction, is suggested by theoretical models to dominate ...

  3. Nuclear fusion - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fusion

    Fusion powers stars and produces virtually all elements in a process called nucleosynthesis. The Sun is a main-sequence star, and, as such, generates its energy by nuclear fusion of hydrogen nuclei into helium. In its core, the Sun fuses 620 million metric tons of hydrogen and makes 616 million metric tons of helium each second.

  4. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    Hydrogen fusion (nuclear fusion of four protons to form a helium-4 nucleus [20]) is the dominant process that generates energy in the cores of main-sequence stars. It is also called "hydrogen burning", which should not be confused with the chemical combustion of hydrogen in an oxidizing atmosphere.

  5. The Hope and Hype of Fusion Energy, Explained - AOL

    www.aol.com/news/hope-hype-fusion-energy...

    Fusion forces together atoms of very light, stable elements like isotopes of hydrogen, creating slightly heavier elements like helium and producing as much as four times as much energy, per unit ...

  6. Nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Nucleosynthesis

    After about 20 minutes, the universe had expanded and cooled to a point at which these high-energy collisions among nucleons ended, so only the fastest and simplest reactions occurred, leaving our universe containing hydrogen and helium. The rest is traces of other elements such as lithium and the hydrogen isotope deuterium. Nucleosynthesis in ...

  7. Stellar evolution - Wikipedia

    en.wikipedia.org/wiki/Stellar_evolution

    After a star has consumed the helium at the core, hydrogen and helium fusion continues in shells around a hot core of carbon and oxygen. The star follows the asymptotic giant branch on the Hertzsprung–Russell diagram, paralleling the original red-giant evolution, but with even faster energy generation (which lasts for a shorter time). [18]

  8. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    All energy-producing nuclear interactions between two hydrogen isotopes and between hydrogen and helium-3 are fusion, as the product of these interactions include a heavier nucleus. However, the energy-producing nuclear interaction of a neutron with lithium–6 produces Hydrogen-3 and Helium-4, each a lighter nucleus.

  9. Nuclear transmutation - Wikipedia

    en.wikipedia.org/wiki/Nuclear_transmutation

    Illustration of a proton–proton chain, from hydrogen forming deuterium, helium-3, and regular helium-4. Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. [1] Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed.