Search results
Results from the WOW.Com Content Network
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic ...
The definition of the discriminant of a general algebraic number field, K, was given by Dedekind in 1871. [16] At this point, he already knew the relationship between the discriminant and ramification. [17] Hermite's theorem predates the general definition of the discriminant with Charles Hermite publishing a proof of it in 1857. [18]
In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation. Other ways of solving quadratic equations, such as completing the square , yield the same solutions.
In mathematics, a quartic equation is one which can be expressed as a quartic function equaling zero. The general form of a quartic equation is The general form of a quartic equation is Graph of a polynomial function of degree 4, with its 4 roots and 3 critical points .
In algebra, a cubic equation in one variable is an equation of the form + ... is positive (this implies that the discriminant of the equation is negative) ...
For quadratic equations with rational coefficients, if the discriminant is a square number, then the roots are rational—in other cases they may be quadratic irrationals. If the discriminant is zero, then there is exactly one real root , sometimes called a repeated or double root or two equal roots.
In algebra, a quartic function is a function of the form = + + + +, α. where a is nonzero, which is defined by a polynomial of degree four, called a quartic polynomial. A quartic equation, or equation of the fourth degree, is an equation that equates a quartic polynomial to zero, of the form
The discriminant B 2 – 4AC of the conic section's quadratic equation (or equivalently the determinant AC – B 2 /4 of the 2 × 2 matrix) and the quantity A + C (the trace of the 2 × 2 matrix) are invariant under arbitrary rotations and translations of the coordinate axes, [14] [15] [16] as is the determinant of the 3 × 3 matrix above.