Search results
Results from the WOW.Com Content Network
During the selection step of the research study, if an unequal number of test subjects have similar subject-related variables there is a threat to the internal validity. For example, a researcher created two test groups, the experimental and the control groups.
This strategy is advantageous because it moderates several threats to validity, and history effects in particular. [2] [4] Concurrent multiple baseline designs are also useful for saving time, since all participants are processed at once. The ability to retrieve complete data sets within well defined time constraints is a valuable asset while ...
The major threats to internal validity are history, maturation, testing, instrumentation, statistical regression, selection, experimental mortality, and selection-history interactions. One way to minimize the influence of artifacts is to use a pretest-posttest control group design.
This is why validity is important for quasi experiments because they are all about causal relationships. It occurs when the experimenter tries to control all variables that could affect the results of the experiment. Statistical regression, history and the participants are all possible threats to internal validity.
A distinction of sampling bias (albeit not a universally accepted one) is that it undermines the external validity of a test (the ability of its results to be generalized to the rest of the population), while selection bias mainly addresses internal validity for differences or similarities found in the sample at hand. In this sense, errors ...
In other words, the relevance of external and internal validity to a research study depends on the goals of the study. Furthermore, conflating research goals with validity concerns can lead to the mutual-internal-validity problem, where theories are able to explain only phenomena in artificial laboratory settings but not the real world. [13] [14]
In qualitative research, a member check, also known as informant feedback or respondent validation, is a technique used by researchers to help improve the accuracy, credibility, validity, and transferability (also known as applicability, internal validity, [1] or fittingness) of a study. [2]
Convergent validity refers to the degree to which two measures of constructs that theoretically should be related, are in fact related. In contrast, discriminant validity tests whether concepts or measurements that are supposed to be unrelated are, in fact, unrelated. [19] Take, for example, a construct of general happiness.