Search results
Results from the WOW.Com Content Network
% Note if input image I was already a grayscale image, grayscale channel % would have simply been equal to input image, i.e., gray channel = I gray_channel = rgb2gray (I); It is clear from the above examples that a channel can be generated by either simply extracting specific information from the original image or by manipulating the input ...
If we use Harris corner detector in a color image, the first step is to convert it into a grayscale image, which will enhance the processing speed. The value of the gray scale pixel can be computed as a weighted sums of the values R, B and G of the color image, {,,}, where, e.g.,
max is the maximum value for color level in the input image within the selected kernel. min is the minimum value for color level in the input image within the selected kernel. [4] Local contrast stretching considers each range of color palate in the image (R, G, and B) separately, providing a set of minimum and maximum values for each color palate.
A channel in this context is the grayscale image of the same size as a color image, [citation needed] made of just one of these primary colors. For instance, an image from a standard digital camera will have a red, green and blue channel. A grayscale image has just one channel.
In mathematical morphology and digital image processing, a top-hat transform is an operation that extracts small elements and details from given images.There exist two types of top-hat transform: the white top-hat transform is defined as the difference between the input image and its opening by some structuring element, while the black top-hat transform is defined dually as the difference ...
For example, if applied to 8-bit image displayed with 8-bit gray-scale palette it will further reduce color depth (number of unique shades of gray) of the image. Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images.
Users may add images to the data set by upload, and add labels or annotations to existing images. Due to its open nature, LabelMe has many more images covering a much wider scope than Caltech 101. However, since each person decides what images to upload, and how to label and annotate each image, the images are less consistent.
This technique is commonly used for simplifying images, reducing storage requirements, and facilitating processing operations. In grayscale quantization, an image with N intensity levels is converted into an image with a reduced number of levels, typically L levels, where L<N. The process involves mapping each pixel's original intensity value ...