Search results
Results from the WOW.Com Content Network
Protein–protein interaction prediction is a field combining bioinformatics and structural biology in an attempt to identify and catalog physical interactions between pairs or groups of proteins. Understanding protein–protein interactions is important for the investigation of intracellular signaling pathways, modelling of protein complex ...
This list of protein subcellular localisation prediction tools includes software, databases, and web services that are used for protein subcellular localization prediction. Some tools are included that are commonly used to infer location through predicted structural properties, such as signal peptide or transmembrane helices , and these tools ...
The Database of Interacting Proteins (DIP) is a biological database which catalogs experimentally determined interactions between proteins. [ 2 ] [ 3 ] It combines information from a variety of sources to create a single, consistent set of protein–protein interactions.
Exploring the predicted interaction networks can suggest new directions for future experimental research and provide cross-species predictions for efficient interaction mapping. [7] Protein–protein interaction network visualized by STRING. In this view, the color saturation of the edges represents the confidence score of a functional association
The Biological General Repository for Interaction Datasets (BioGRID) is a curated biological database of protein-protein interactions, genetic interactions, chemical interactions, and post-translational modifications created in 2003 (originally referred to as simply the General Repository for Interaction Datasets (GRID) [2] by Mike Tyers, Bobby-Joe Breitkreutz, and Chris Stark at the Lunenfeld ...
The Swiss-model Workspace integrates programs and databases required for protein structure prediction and modelling in a web-based workspace. Depending on the complexity of the modelling task, different modes of use can be applied, in which the user has different levels of control over individual modelling steps: automated mode, alignment mode, and project mode.
The Cytoscape core developer team continues to work on this project and released Cytoscape 3.0 in 2013. This represented a major change in the Cytoscape architecture; it is a more modularized, expandable and maintainable version of the software. [4]
The data in SMID is derived from the Protein Data Bank (PDB), a database of known protein crystal structures. SMID can be queried by entering a protein GI, domain identifier, PDB ID or SMID ID. The results of a search provide small molecule, protein, and domain information for each interaction identified in the database.