enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Volume (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Volume_(thermodynamics)

    Specific volume is the volume occupied by a unit of mass of a material. [1] In many cases, the specific volume is a useful quantity to determine because, as an intensive property, it can be used to determine the complete state of a system in conjunction with another independent intensive variable. The specific volume also allows systems to be ...

  3. Specific volume - Wikipedia

    en.wikipedia.org/wiki/Specific_volume

    For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...

  4. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The behavior of a thermodynamic system is summarized in the laws of Thermodynamics, which concisely are: . Zeroth law of thermodynamics; If A, B, C are thermodynamic systems such that A is in thermal equilibrium with B and B is in thermal equilibrium with C, then A is in thermal equilibrium with C.

  5. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    = ⁡, where k B is the Boltzmann constant, and Ω denotes the volume of macrostate in the phase space or otherwise called thermodynamic probability. d S = δ Q T {\displaystyle dS={\frac {\delta Q}{T}}} , for reversible processes only

  6. Gay-Lussac's law - Wikipedia

    en.wikipedia.org/wiki/Gay-Lussac's_law

    Under STP, a reaction between three cubic meters of hydrogen gas and one cubic meter of nitrogen gas will produce about two cubic meters of ammonia.. The law of combining volumes states that when gases chemically react together, they do so in amounts by volume which bear small whole-number ratios (the volumes calculated at the same temperature and pressure).

  7. Amagat's law - Wikipedia

    en.wikipedia.org/wiki/Amagat's_law

    Amagat's law states that the extensive volume V = Nv of a gas mixture is equal to the sum of volumes V i of the K component gases, if the temperature T and the pressure p remain the same: [1] [2] (,) = = (,). This is the experimental expression of volume as an extensive quantity.

  8. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    Here, U is internal energy, T is absolute temperature, S is entropy, P is pressure, and V is volume. This is only one expression of the fundamental thermodynamic relation. It may be expressed in other ways, using different variables (e.g. using thermodynamic potentials). For example, the fundamental relation may be expressed in terms of the ...

  9. Charles's law - Wikipedia

    en.wikipedia.org/wiki/Charles's_law

    where V 100 is the volume occupied by a given sample of gas at 100 °C; V 0 is the volume occupied by the same sample of gas at 0 °C; and k is a constant which is the same for all gases at constant pressure. This equation does not contain the temperature and so is not what became known as Charles's Law.