enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  3. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    In mathematics, a quartic equation is one which can be expressed as a quartic function equaling zero. The general form of a quartic equation is The general form of a quartic equation is Graph of a polynomial function of degree 4, with its 4 roots and 3 critical points .

  4. Quartic function - Wikipedia

    en.wikipedia.org/wiki/Quartic_function

    The derivative of a quartic function is a cubic function. Sometimes the term biquadratic is used instead of quartic, but, usually, biquadratic function refers to a quadratic function of a square (or, equivalently, to the function defined by a quartic polynomial without terms of odd degree), having the form

  5. Bairstow's method - Wikipedia

    en.wikipedia.org/wiki/Bairstow's_method

    In numerical analysis, Bairstow's method is an efficient algorithm for finding the roots of a real polynomial of arbitrary degree. The algorithm first appeared in the appendix of the 1920 book Applied Aerodynamics by Leonard Bairstow. [1] [non-primary source needed] The algorithm finds the roots in complex conjugate pairs using only real ...

  6. Steffensen's method - Wikipedia

    en.wikipedia.org/wiki/Steffensen's_method

    Steffensen's method accelerates this convergence, to make it quadratic. For orientation, the root function and the fixed-point functions are simply related by = + , where is some scalar constant small enough in magnitude to make stable under iteration, but large enough for the non-linearity of the function to be appreciable.

  7. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    The function f(x) = x 2 has a root at 0. [15] Since f is continuously differentiable at its root, the theory guarantees that Newton's method as initialized sufficiently close to the root will converge. However, since the derivative f ′ is zero at the root, quadratic convergence is not ensured by the theory. In this particular example, the ...

  8. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  9. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    Finding one root; Finding all roots; Finding roots in a specific region of the complex plane, typically the real roots or the real roots in a given interval (for example, when roots represents a physical quantity, only the real positive ones are interesting). For finding one root, Newton's method and other general iterative methods work ...