Search results
Results from the WOW.Com Content Network
Differential geometry views a plane as a 2-dimensional real manifold, a topological plane which is provided with a differential structure. Again in this case, there is no notion of distance, but there is now a concept of smoothness of maps, for example a differentiable or smooth path (depending on the type of differential structure applied ...
The Elements begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language. [1]
A plane segment or planar region (or simply "plane", in lay use) is a planar surface region; it is analogous to a line segment. A bivector is an oriented plane segment, analogous to directed line segments. [a] A face is a plane segment bounding a solid object. [1] A slab is a region bounded by two parallel planes.
Plane equation in normal form. In Euclidean geometry, a plane is a flat two-dimensional surface that extends indefinitely. Euclidean planes often arise as subspaces of three-dimensional space. A prototypical example is one of a room's walls, infinitely extended and assumed infinitesimal thin.
In elementary geometry, a face is a polygon [note 1] on the boundary of a polyhedron. [3] [4] Other names for a polygonal face include polyhedron side and Euclidean plane tile. For example, any of the six squares that bound a cube is a face of the cube. Sometimes "face" is also used to refer to the 2-dimensional features of a 4-polytope.
A smooth plane curve is a curve in a real Euclidean plane and is a one-dimensional smooth manifold.This means that a smooth plane curve is a plane curve which "locally looks like a line", in the sense that near every point, it may be mapped to a line by a smooth function.
In coordination chemistry and crystallography, the geometry index or structural parameter (τ) is a number ranging from 0 to 1 that indicates what the geometry of the coordination center is. The first such parameter for 5-coordinate compounds was developed in 1984. [ 1 ]
Inversive geometry itself can be performed with the larger system known as Conformal Geometric Algebra(CGA), of which Plane-based GA is a subalgebra. CGA is also usually applied to 3D space, and is able to model general spheres, circles, and conformal (angle-preserving) transformations, which include the transformations seen on the Poincare ...