Search results
Results from the WOW.Com Content Network
Word problem from the Līlāvatī (12th century), with its English translation and solution. In science education, a word problem is a mathematical exercise (such as in a textbook, worksheet, or exam) where significant background information on the problem is presented in ordinary language rather than in mathematical notation.
The word problem for an algebra is then to determine, given two expressions (words) involving the generators and operations, whether they represent the same element of the algebra modulo the identities. The word problems for groups and semigroups can be phrased as word problems for algebras. [1]
Hilbert's tenth problem: the problem of deciding whether a Diophantine equation (multivariable polynomial equation) has a solution in integers. Determining whether a given initial point with rational coordinates is periodic, or whether it lies in the basin of attraction of a given open set, in a piecewise-linear iterated map in two dimensions ...
A classical example of a word equation is the commutation equation =, in which is an unknown and is a constant word. It is well-known [ 4 ] that the solutions of the commutation equation are exactly those morphisms h {\displaystyle h} mapping x {\displaystyle x} to some power of w {\displaystyle w} .
The word problem is a well-known example of an undecidable problem. If A {\displaystyle A} is a finite set of generators for G {\displaystyle G} , then the word problem is the membership problem for the formal language of all words in A {\displaystyle A} and a formal set of inverses that map to the identity under the natural map from the free ...
Word problem (mathematics education), a type of textbook exercise or exam question to have students apply abstract mathematical concepts to real-world situations; Word problem (mathematics), a decision problem for algebraic identities in mathematics and computer science; Word problem for groups, the problem of recognizing the identity element ...
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.