Search results
Results from the WOW.Com Content Network
In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem , and it relates the distribution of electric charge to the resulting electric field .
File:Cheat sheet.pdf. Add languages. ... English: Cheat sheet explaining basic Wikipedia editing code. To be used at any outreach events. ... You are free: to share ...
The source equations (Gauss' law for electricity and the Maxwell-Ampère law) are =. while the other two (Gauss' law for magnetism and Faraday's law) are obtained from the fact that F is the 4-curl of A, or, in other words, from the fact that the Bianchi identity holds for the electromagnetic field tensor.
It is an arbitrary closed surface S = ∂V (the boundary of a 3-dimensional region V) used in conjunction with Gauss's law for the corresponding field (Gauss's law, Gauss's law for magnetism, or Gauss's law for gravity) by performing a surface integral, in order to calculate the total amount of the source quantity enclosed; e.g., amount of ...
Gauss law. Add languages. Add links. Article; Talk; English. ... Download QR code; Print/export Download as PDF; Printable version; In other projects
Maxwell's equations can directly give inhomogeneous wave equations for the electric field E and magnetic field B. [1] Substituting Gauss's law for electricity and Ampère's law into the curl of Faraday's law of induction, and using the curl of the curl identity ∇ × (∇ × X) = ∇(∇ ⋅ X) − ∇ 2 X (The last term in the right side is the vector Laplacian, not Laplacian applied on ...
Gauss's law for magnetism can be written in two forms, a differential form and an integral form. These forms are equivalent due to the divergence theorem. The name "Gauss's law for magnetism" [1] is not universally used. The law is also called "Absence of free magnetic poles". [2]
Gauss's law for gravity is often more convenient to work from than Newton's law. [1] The form of Gauss's law for gravity is mathematically similar to Gauss's law for electrostatics, one of Maxwell's equations. Gauss's law for gravity has the same mathematical relation to Newton's law that Gauss's law for electrostatics bears to Coulomb's law.