Search results
Results from the WOW.Com Content Network
In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem , and it relates the distribution of electric charge to the resulting electric field .
It is impossible to mathematically prove Newton's law from Gauss's law alone, because Gauss's law specifies the divergence of g but does not contain any information regarding the curl of g (see Helmholtz decomposition). In addition to Gauss's law, the assumption is used that g is irrotational (has zero curl), as gravity is a conservative force:
Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.
Any inverse-square law can instead be written in a Gauss's law-type form (with a differential and integral form, as described above). Two examples are Gauss's law (in electrostatics), which follows from the inverse-square Coulomb's law, and Gauss's law for gravity, which follows from the inverse-square Newton's law of universal gravitation. The ...
In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.
Gauss's law for magnetism thus states that the net magnetic flux through a closed surface equals zero. The integral and differential forms of Gauss's law for magnetism are mathematically equivalent, due to the divergence theorem. That said, one or the other might be more convenient to use in a particular computation.
The shell theorem is an immediate consequence of Gauss's law for gravity saying that ∫ S g ⋅ d S = − 4 π G M {\displaystyle \int _{S}{\mathbf {g} }\cdot \,d{\mathbf {S} }=-4\pi GM} where M is the mass of the part of the spherically symmetric mass distribution that is inside the sphere with radius r and
Mathematically, we can state the law of charge conservation as a continuity equation: = ˙ ˙ (). where / is the electric charge accumulation rate in a specific volume at time t, ˙ is the amount of charge flowing into the volume and ˙ is the amount of charge flowing out of the volume; both amounts are regarded as generic functions of time.