enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic except at zero and the negative integers, where it has simple poles. The gamma function has no zeros, so the reciprocal gamma function ⁠ 1 / Γ(z) ⁠ is an entire function.

  3. Digamma function - Wikipedia

    en.wikipedia.org/wiki/Digamma_function

    The roots of the digamma function are the saddle points of the complex-valued gamma function. Thus they lie all on the real axis. The only one on the positive real axis is the unique minimum of the real-valued gamma function on R + at x 0 = 1.461 632 144 968 362 341 26.... All others occur single between the poles on the negative axis:

  4. q-gamma function - Wikipedia

    en.wikipedia.org/wiki/Q-gamma_function

    Thus the -gamma function can be considered as an extension of the -factorial function to the real numbers. The relation to the ordinary gamma function is made explicit in the limit = (). There is a simple proof of this limit by Gosper.

  5. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    For all positive integers, ! = (+), where Γ denotes the gamma function. However, the gamma function, unlike the factorial, is more broadly defined for all complex numbers other than non-positive integers; nevertheless, Stirling's formula may still be applied.

  6. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    A similar result holds for the rising factorial and the backward difference operator. The study of analogies of this type is known as umbral calculus. A general theory covering such relations, including the falling and rising factorial functions, is given by the theory of polynomial sequences of binomial type and Sheffer sequences. Falling and ...

  7. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    One property of the gamma function, distinguishing it from other continuous interpolations of the factorials, is given by the Bohr–Mollerup theorem, which states that the gamma function (offset by one) is the only log-convex function on the positive real numbers that interpolates the factorials and obeys the same functional equation.

  8. Pochhammer k-symbol - Wikipedia

    en.wikipedia.org/wiki/Pochhammer_k-symbol

    Díaz and Pariguan use these definitions to demonstrate a number of properties of the hypergeometric function. Although Díaz and Pariguan restrict these symbols to k > 0, the Pochhammer k-symbol as they define it is well-defined for all real k, and for negative k gives the falling factorial, while for k = 0 it reduces to the power x n.

  9. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    The Cauchy formula for repeated integration, namely () = ()! (), leads in a straightforward way to a generalization for real n: using the gamma function to remove the discrete nature of the factorial function gives us a natural candidate for applications of the fractional integral operator as () = () ().