Search results
Results from the WOW.Com Content Network
This proves that all points in the intersection are the same distance from the point E in the plane P, in other words all points in the intersection lie on a circle C with center E. [8] This proves that the intersection of P and S is contained in C. Note that OE is the axis of the circle. Now consider a point D of the circle C. Since C lies in ...
In finite geometry, PG(3, 2) is the smallest three-dimensional projective space. It can be thought of as an extension of the Fano plane. It has 15 points, 35 lines, and 15 planes. [1] It also has the following properties: [2] Each point is contained in 7 lines and 7 planes. Each line is contained in 3 planes and contains 3 points.
Those with reflection in the planes through the axis, with or without reflection in the plane through the origin perpendicular to the axis, are the symmetry groups for the two types of cylindrical symmetry. Any 3D shape (subset of R 3) having infinite rotational symmetry must also have mirror symmetry for every plane through the axis. Physical ...
In 3D plane-based GA, points 3-reflections. Algebraically this means they are grade-3 – but their geometric interpretation is very different from the usual geometric interpretation of a "trivector" as an "oriented volume element". The algebra of all distance-preserving transformations in 3D is called the Euclidean Group, ().
Another type of sphere arises from a 4-ball, whose three-dimensional surface is the 3-sphere: points equidistant to the origin of the euclidean space R 4. If a point has coordinates, P(x, y, z, w), then x 2 + y 2 + z 2 + w 2 = 1 characterizes those points on the unit 3-sphere centered at the origin.
A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus any two distinct lines in a projective plane intersect at exactly one point. Renaissance artists, in developing the techniques of drawing in perspective, laid the groundwork for this mathematical topic.
The Fano plane is an example of an (n 3)-configuration, that is, a set of n points and n lines with three points on each line and three lines through each point. The Fano plane, a (7 3)-configuration, is unique and is the smallest such configuration. [11]
A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.