Ads
related to: fraction division problems with answers
Search results
Results from the WOW.Com Content Network
If the divisor has a fractional part, one can restate the problem by moving the decimal to the right in both numbers until the divisor has no fraction, which can make the problem easier to solve (e.g., 10/2.5 = 100/25 = 4). Division can be calculated with an abacus. [14]
Quotition is the concept of division most used in measurement. For example, measuring the length of a table using a measuring tape involves comparing the table to the markings on the tape. This is conceptually equivalent to dividing the length of the table by a unit of length, the distance between markings.
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a/b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 / 2 , − 8 / 5 , −8 / 5 , and 8 / −5
Many similar problems of division into fractions are known from mathematics in the medieval Islamic world, [1] [4] [9] but "it does not seem that the story of the 17 camels is part of classical Arab-Islamic mathematics". [9] Supposed origins of the problem in the works of al-Khwarizmi, Fibonacci or Tartaglia also cannot be verified. [10]
However, in other rings, division by nonzero elements may also pose problems. For example, the ring Z /6 Z of integers mod 6. The meaning of the expression 2 2 {\textstyle {\frac {2}{2}}} should be the solution x of the equation 2 x = 2 {\displaystyle 2x=2} .
If necessary, simplify the long division problem by moving the decimals of the divisor and dividend by the same number of decimal places, to the right (or to the left), so that the decimal of the divisor is to the right of the last digit. When doing long division, keep the numbers lined up straight from top to bottom under the tableau.
Ads
related to: fraction division problems with answers