Search results
Results from the WOW.Com Content Network
Absolute entropy of strontium. The solid line refers to the entropy of strontium in its normal standard state at 1 atm pressure. The dashed line refers to the entropy of strontium vapor in a non-physical state. The standard entropy change for the formation of a compound from the elements, or for any standard reaction is designated ΔS° form or ...
The standard molar entropy at pressure = is usually given the symbol S°, and has units of joules per mole per kelvin (J⋅mol −1 ⋅K −1). Unlike standard enthalpies of formation, the value of S° is absolute. That is, an element in its standard state has a definite, nonzero value of S at room temperature.
Std enthalpy change of fusion, Δ fus H o +5.653 kJ/mol Std entropy change of fusion, Δ fus S o +28.93 J/(mol·K) Std enthalpy change of vaporization, Δ vap H o +23.35 kJ/mol at BP of −33.4 °C Std entropy change of vaporization, Δ vap S o +97.41 J/(mol·K) at BP of −33.4 °C Solid properties Std enthalpy change of formation, Δ f H o ...
Std enthalpy change of fusion, Δ fus H o: 3.1773 kJ/mol Std entropy change of fusion, Δ fus S o: 18.1 J/(mol·K) Std enthalpy change of vaporization, Δ vap H o: 37.6 ± 0.5 kJ/mol [4] Std entropy change of vaporization, Δ vap S o: 113 J/(mol·K) Solid properties Std enthalpy change of formation, Δ f H o solid? kJ/mol Standard molar entropy ...
The table below gives thermodynamic data of liquid CO 2 in equilibrium with its vapor at various temperatures. Heat content data, heat of vaporization, and entropy values are relative to the liquid state at 0 °C temperature and 3483 kPa pressure.
Std enthalpy change of formation, Δ f H o solid? kJ/mol Standard molar entropy, S o solid: 45.56 J/(mol K) Heat capacity, c p: 118.4 J/(mol K) at 0 °C Liquid properties Std enthalpy change of formation, Δ f H o liquid +48.7 kJ/mol Standard molar entropy, S o liquid: 173.26 J/(mol K) Enthalpy of combustion, Δ c H o –3273 kJ/mol Heat ...
The standard state of a material (pure substance, mixture or solution) is a reference point used to calculate its properties under different conditions.A degree sign (°) or a superscript Plimsoll symbol (⦵) is used to designate a thermodynamic quantity in the standard state, such as change in enthalpy (ΔH°), change in entropy (ΔS°), or change in Gibbs free energy (ΔG°).
Std entropy change of fusion, Δ fus S o? J/(mol·K) Std enthalpy change of vaporization, Δ vap H o: 24.545 kJ/mol Std entropy change of vaporization, Δ vap S o? J/(mol·K) Solid properties Std enthalpy change of formation, Δ f H o solid: −103.85 [1] kJ/mol Standard molar entropy, S o solid? J/(mol K) Heat capacity, c p? J/(mol K) Liquid ...