enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Equality_(mathematics)

    In mathematics, equality is a relationship between two quantities or expressions, stating that they have the same value, or represent the same mathematical object. [1] Equality between A and B is written A = B, and pronounced "A equals B". In this equality, A and B are distinguished by calling them left-hand side (LHS), and right-hand side (RHS).

  3. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    Symmetric and transitive: The relation R on N, defined as aRb ↔ ab ≠ 0. Or any partial equivalence relation; Reflexive and symmetric: The relation R on Z, defined as aRb ↔ "a − b is divisible by at least one of 2 or 3." Or any dependency relation. Properties definable in first-order logic that an equivalence relation may or may not ...

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  5. Symmetric relation - Wikipedia

    en.wikipedia.org/wiki/Symmetric_relation

    Symmetric and antisymmetric relations. By definition, a nonempty relation cannot be both symmetric and asymmetric (where if a is related to b, then b cannot be related to a (in the same way)). However, a relation can be neither symmetric nor asymmetric, which is the case for "is less than or equal to" and "preys on").

  6. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  7. Transitive relation - Wikipedia

    en.wikipedia.org/wiki/Transitive_relation

    However, there is a formula for finding the number of relations that are simultaneously reflexive, symmetric, and transitive – in other words, equivalence relations – (sequence A000110 in the OEIS), those that are symmetric and transitive, those that are symmetric, transitive, and antisymmetric, and those that are total, transitive, and ...

  8. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    By the definition of matrix equality, which requires that the entries in all corresponding positions be equal, equal matrices must have the same dimensions (as matrices of different sizes or shapes cannot be equal). Consequently, only square matrices can be symmetric. The entries of a symmetric matrix are symmetric with respect to the main ...

  9. Symmetry of second derivatives - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_second_derivatives

    In mathematical analysis, Schwarz's theorem (or Clairaut's theorem on equality of mixed partials) [9] named after Alexis Clairaut and Hermann Schwarz, states that for a function : defined on a set , if is a point such that some neighborhood of is contained in and has continuous second partial derivatives on that neighborhood of , then for all i ...