Search results
Results from the WOW.Com Content Network
In order to solve the equation of an electron in a spherical potential, Hartree first introduced atomic units to eliminate physical constants. Then he converted the Laplacian from Cartesian to spherical coordinates to show that the solution was a product of a radial function () / and a spherical harmonic with an angular quantum number , namely = (/) (,).
The presence of the sign in the Appleton–Hartree equation gives two separate solutions for the refractive index. [6] For propagation perpendicular to the magnetic field, i.e., , the '+' sign represents the "ordinary mode," and the '−' sign represents the "extraordinary mode."
A solution of these equations yields the Hartree–Fock wave function and energy of the system. Hartree–Fock approximation is an instance of mean-field theory, [1] where neglecting higher-order fluctuations in order parameter allows interaction terms to be replaced with quadratic terms, obtaining exactly solvable Hamiltonians.
In theoretical and computational chemistry, a basis set is a set of functions (called basis functions) that is used to represent the electronic wave function in the Hartree–Fock method or density-functional theory in order to turn the partial differential equations of the model into algebraic equations suitable for efficient implementation on a computer.
Hartree defined units based on three physical constants: [1]: 91 Both in order to eliminate various universal constants from the equations and also to avoid high powers of 10 in numerical work, it is convenient to express quantities in terms of units, which may be called 'atomic units', defined as follows:
The Hartree–Fock method is also used in atomic physics and condensed matter physics as Density Functional Theory, DFT. The process of solving the Hartree–Fock equations can only be iterative, since these are in fact a Schrödinger equation in which the potential depends on the density, that is, precisely on the wavefunctions to be
Jellium, also known as the uniform electron gas (UEG) or homogeneous electron gas (HEG), is a quantum mechanical model of interacting electrons in a solid where the positive charges (i.e. atomic nuclei) are assumed to be uniformly distributed in space; the electron density is a uniform quantity as well in space.
Møller–Plesset perturbation theory (MP) is one of several quantum chemistry post-Hartree–Fock ab initio methods in the field of computational chemistry.It improves on the Hartree–Fock method by adding electron correlation effects by means of Rayleigh–Schrödinger perturbation theory (RS-PT), usually to second (MP2), third (MP3) or fourth (MP4) order.