Search results
Results from the WOW.Com Content Network
If the geometric dimension of a pappian projective space is at least 2, then every collineation is the product of a homography (a projective linear transformation) and an automorphic collineation. More precisely, the collineation group is the projective semilinear group, which is the semidirect product of homographies by automorphic collineations.
A mapping of a geometry to itself which sends lines to lines is called a collineation; it preserves the collinearity property. The linear maps (or linear functions) of vector spaces , viewed as geometric maps, map lines to lines; that is, they map collinear point sets to collinear point sets and so, are collineations.
The geometric view of a central collineation is easiest to see in a projective plane. Given a central collineation α, consider a line ℓ that does not pass through the center O, and its image under α, ℓ ′ = α(ℓ). Setting R = ℓ ∩ ℓ ′, the axis of α is some line M through R.
By the Fundamental theorem of projective geometry, the full collineation group (or automorphism group, or symmetry group) is the projective linear group PGL(3, 2), [a] Hirschfeld 1979, p. 131 [3] This is a well-known group of order 168 = 2 3 ·3·7, the next non-abelian simple group after A 5 of order 60 (ordered by size).
Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
In projective geometry, duality or plane duality is a formalization of the striking symmetry of the roles played by points and lines in the definitions and theorems of projective planes.
In 1847, von Staudt demonstrated that the algebraic structure is implicit in projective geometry, by creating an algebra based on construction of the projective harmonic conjugate, which he called a throw (German: Wurf): given three points on a line, the harmonic conjugate is a fourth point that makes the cross ratio equal to −1.