Search results
Results from the WOW.Com Content Network
In particular, for three points in the plane (n = 2), the above matrix is square and the points are collinear if and only if its determinant is zero; since that 3 × 3 determinant is plus or minus twice the area of a triangle with those three points as vertices, this is equivalent to the statement that the three points are collinear if and only ...
They proved that the maximum number of points in the grid with no three points collinear is (). Similarly to Erdős's 2D construction, this can be accomplished by using points ( x , y , x 2 + y 2 {\displaystyle (x,y,x^{2}+y^{2}} mod p ) {\displaystyle p)} , where p {\displaystyle p} is a prime congruent to 3 mod 4 . [ 20 ]
By extension, k points in a plane are collinear if and only if any (k–1) pairs of points have the same pairwise slopes. In Euclidean geometry, the Euclidean distance d(a,b) between two points a and b may be used to express the collinearity between three points by: [3] [4]
The equations originate from the central projection of a point of the object through the optical centre of the camera to the image on the sensor plane. [1] The three points P, Q and R are projected on the plane S through the projection centre C x- and z-axis of the projection of P through the projection centre C
In mathematics, particularly in Euclidean geometry, Longuerre's theorem is a result concerning the collinearity of points constructed from a cyclic quadrilateral. It is a generalization of the Simson line, which states that the three projections of a point on the circumcircle of a triangle to its sides are collinear. [1]
The Apollonian circles are two 1-parameter families determined by 2 points. As is well known, three non-collinear points determine a circle in Euclidean geometry and two distinct points determine a pencil of circles such as the Apollonian circles. These results seem to run counter the general result since circles are special cases of conics.
If the three points are collinear, R can be informally considered to be +∞, and it makes rigorous sense to define c(x, y, z) = 0. If any of the points x, y and z are coincident, again define c(x, y, z) = 0. Using the well-known formula relating the side lengths of a triangle to its area, it follows that
The three apex points always define a plane in three dimensions, and all three centers of similarity must lie in the plane containing the circular bases. Hence, the three centers must lie on the intersection of the two planes, which must be a line in three dimensions. [2] Monge's theorem can also be proved by using Desargues' theorem.