enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    In particular, for three points in the plane (n = 2), the above matrix is square and the points are collinear if and only if its determinant is zero; since that 3 × 3 determinant is plus or minus twice the area of a triangle with those three points as vertices, this is equivalent to the statement that the three points are collinear if and only ...

  3. Monge's theorem - Wikipedia

    en.wikipedia.org/wiki/Monge's_theorem

    Monge's theorem states that the three such points given by the three pairs of circles always lie in a straight line. In the case of two of the circles being of equal size, the two external tangent lines are parallel. In this case Monge's theorem asserts that the other two intersection points must lie on a line parallel to those two external ...

  4. Pappus's hexagon theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_hexagon_theorem

    Thus (E, H; J, G) = (E, K; D, L), so by Lemma X, the points H, M, and K are collinear. That is, the points of intersection of the pairs of opposite sides of the hexagon ADEGBZ are collinear. Lemmas XV and XVII are that, if the point M is determined as the intersection of HK and BG, then the points A, M, and D are collinear.

  5. Menelaus's theorem - Wikipedia

    en.wikipedia.org/wiki/Menelaus's_theorem

    Whether or not D, E, F are collinear, there are three homotheties with centers D, E, F that respectively send B to C, C to A, and A to B. The composition of the three then is an element of the group of homothety-translations that fixes B , so it is a homothety with center B , possibly with ratio 1 (in which case it is the identity).

  6. Duality (projective geometry) - Wikipedia

    en.wikipedia.org/wiki/Duality_(projective_geometry)

    if n is even, the absolute points are collinear on a non-absolute line. An upper bound on the number of absolute points in the case that n is a square was given by Seib [19] and a purely combinatorial argument can establish: [20] A polarity π in a projective plane of square order n = s 2 has at most s 3 + 1 absolute points.

  7. Simson line - Wikipedia

    en.wikipedia.org/wiki/Simson_line

    In geometry, given a triangle ABC and a point P on its circumcircle, the three closest points to P on lines AB, AC, and BC are collinear. [1] The line through these points is the Simson line of P, named for Robert Simson. [2] The concept was first published, however, by William Wallace in 1799, [3] and is sometimes called the Wallace line. [4]

  8. Collineation - Wikipedia

    en.wikipedia.org/wiki/Collineation

    Simply, a collineation is a one-to-one map from one projective space to another, or from a projective space to itself, such that the images of collinear points are themselves collinear. One may formalize this using various ways of presenting a projective space. Also, the case of the projective line is special, and hence generally treated ...

  9. Sylvester–Gallai theorem - Wikipedia

    en.wikipedia.org/wiki/Sylvester–Gallai_theorem

    The Sylvester–Gallai theorem was posed as a problem by J. J. Sylvester (). Kelly () suggests that Sylvester may have been motivated by a related phenomenon in algebraic geometry, in which the inflection points of a cubic curve in the complex projective plane form a configuration of nine points and twelve lines (the Hesse configuration) in which each line determined by two of the points ...