Search results
Results from the WOW.Com Content Network
The Flory theory of rubber elasticity suggests that rubber elasticity has primarily entropic origins. By using the following basic equations for Helmholtz free energy and its discussion about entropy, the force generated from the deformation of a rubber chain from its original unstretched conformation can be derived.
Professor Leslie Ronald George Treloar, OBE (30 July 1906 [1] – 18 March 1985) was a leading figure in the science of rubber and elasticity, [2] and writer of a number of influential texts. Leslie Treloar graduated in Physics from University College, Reading , in 1927 and subsequently joined GEC .
The polynomial hyperelastic material model [1] is a phenomenological model of rubber elasticity. In this model, the strain energy density function is of the form of a polynomial in the two invariants , of the left Cauchy-Green deformation tensor. The strain energy density function for the polynomial model is [1]
The Gent hyperelastic material model [1] is a phenomenological model of rubber elasticity that is based on the concept of limiting chain extensibility. In this model, the strain energy density function is designed such that it has a singularity when the first invariant of the left Cauchy-Green deformation tensor reaches a limiting value .
The hyperelastic material is a special case of a Cauchy elastic material. For many materials, linear elastic models do not accurately describe the observed material behaviour. The most common example of this kind of material is rubber, whose stress-strain relationship can be defined as non-linearly elastic, isotropic and incompressible.
The Yeoh model for incompressible rubber is a function only of . For compressible rubbers, a dependence on I 3 {\displaystyle I_{3}} is added on. Since a polynomial form of the strain energy density function is used but all the three invariants of the left Cauchy-Green deformation tensor are not, the Yeoh model is also called the reduced ...
President-elect Donald Trump’s policy agenda is generally good for business, top executives and analysts told me at the Goldman Sachs Industrial and Materials conference this week. “It’s ...
For rubber and biological materials, more sophisticated models are necessary. Such materials may exhibit a non-linear stress–strain behaviour at modest strains, or are elastic up to huge strains. These complex non-linear stress–strain behaviours need to be accommodated by specifically tailored strain-energy density functions.