Search results
Results from the WOW.Com Content Network
Global industrial use of ethylene oxide in 2007 [80] Ethylene oxide is one of the most important raw materials used in large-scale chemical production. Most ethylene oxide is used for synthesis of ethylene glycols, including diethylene glycol and triethylene glycol, that accounts for up to 75% of global consumption. Other important products ...
For example ethylene oxide polymerizes to give polyethylene glycol, also known as polyethylene oxide. The reaction of an alcohol or a phenol with ethylene oxide, ethoxylation, is widely used to produce surfactants: [28] ROH + n C 2 H 4 O → R(OC 2 H 4) n OH. With anhydrides, epoxides give polyesters. [29]
Ethylene is oxidized to produce ethylene oxide, a key raw material in the production of surfactants and detergents by ethoxylation. Ethylene oxide is also hydrolyzed to produce ethylene glycol, widely used as an automotive antifreeze as well as higher molecular weight glycols, glycol ethers, and polyethylene terephthalate. [14] [15
Several million tons of ethylene glycol are produced annually by the hydration of oxirane, a cyclic compound also known as ethylene oxide: C 2 H 4 O + H 2 O → HO–CH 2 CH 2 –OH. Acid catalysts are typically used. [2]
The reaction typically proceeds by blowing ethylene oxide through the alcohol at 180 °C and under 1-2 bar of pressure, with potassium hydroxide (KOH) serving as a catalyst. [5] The process is highly exothermic (ΔH = -92 kJ/mol of ethylene oxide reacted) and requires careful control to avoid a potentially disastrous thermal runaway. [5]
In fact basic chemicals are chemical substances used as a starting material for the production of a wide variety of other chemicals; for this reason they are in general commodities, because they are highly demanded. Some examples of basic chemicals are: ethylene, benzene, chlorine and sulfuric acid. [7]
For premium support please call: 800-290-4726 more ways to reach us
Polymerization of ethylene oxide is an exothermic process. Overheating or contaminating ethylene oxide with catalysts, such as alkalis or metal oxides, can lead to runaway polymerization, which can end in an explosion after a few hours. Polyethylene oxide, or high-molecular-weight polyethylene glycol, is synthesized by suspension polymerization.