Search results
Results from the WOW.Com Content Network
A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi.Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. [2]
Aerobic respiration requires oxygen (O 2) in order to create ATP. Although carbohydrates , fats and proteins are consumed as reactants , aerobic respiration is the preferred method of pyruvate production in glycolysis , and requires pyruvate to the mitochondria in order to be oxidized by the citric acid cycle .
As a result, 10 NADH molecules (from glycolysis and the Krebs cycle), along with 2 FADH 2 molecules, can form a total of 34 ATPs during aerobic respiration (from a single electron transport chain). This means that combined with the Krebs Cycle and glycolysis , the efficiency for the electron transport chain is about 65%, as compared to only 3.5 ...
Mitochondrial matrix has a pH of about 7.8, which is higher than the pH of the intermembrane space of the mitochondria, which is around 7.0–7.4. [5] Mitochondrial DNA was discovered by Nash and Margit in 1963. One to many double stranded mainly circular DNA is present in mitochondrial matrix. Mitochondrial DNA is 1% of total DNA of a cell.
Respiration occurs in the cell mitochondria, which generate the cell's energy by oxidative phosphorylation, using oxygen to release energy stored in cellular nutrients (typically pertaining to glucose) to generate ATP (aerobic respiration). Mitochondria multiply by binary fission, like prokaryotes.
In aerobic respiration, the flow of electrons terminates with molecular oxygen as the final electron acceptor. In anaerobic respiration, other electron acceptors are used, such as sulfate. In an electron transport chain, the redox reactions are driven by the difference in the Gibbs free energy of reactants and products.
All cells can perform anaerobic respiration by glycolysis. Additionally, most organisms can perform more efficient aerobic respiration through the citric acid cycle and oxidative phosphorylation. Additionally plants, algae and cyanobacteria are able to use sunlight to anabolically synthesize compounds from non-living matter by photosynthesis.
Fermentation, like aerobic respiration, begins by breaking glucose into two pyruvate molecules. From here, it proceeds using endogenous organic electron receptors, whereas cellular respiration uses exogenous receptors, such as oxygen in aerobic respiration and nitrate in anaerobic respiration. These varied organic receptors each generate ...