Search results
Results from the WOW.Com Content Network
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
In mathematics, the complex conjugate of a complex vector space is a complex vector space ¯ that has the same elements and additive group structure as , but whose scalar multiplication involves conjugation of the scalars.
In mathematics and mathematical optimization, the convex conjugate of a function is a generalization of the Legendre transformation which applies to non-convex functions. It is also known as Legendre–Fenchel transformation, Fenchel transformation, or Fenchel conjugate (after Adrien-Marie Legendre and Werner Fenchel).
A complex number is real if and only if it equals its own conjugate. The unary operation of taking the complex conjugate of a complex number cannot be expressed by applying only their basic operations addition, subtraction, multiplication and division. Argument φ and modulus r locate a point in the complex plane.
In mathematics, in particular field theory, the conjugate elements or algebraic conjugates of an algebraic element α, over a field extension L/K, are the roots of the minimal polynomial p K,α (x) of α over K. Conjugate elements are commonly called conjugates in contexts where this is not ambiguous.
Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [ l ] is defined as the linear part of the change in the functional, and the second variation [ m ] is defined as the quadratic part.
In mathematics, if G is a group and Π is a representation of it over the complex vector space V, then the complex conjugate representation Π is defined over the complex conjugate vector space V as follows: Π (g) is the conjugate of Π(g) for all g in G. Π is also a representation, as one may check explicitly.
In mathematics, the conjugate of an expression of the form + is , provided that does not appear in a and b.One says also that the two expressions are conjugate. In particular, the two solutions of a quadratic equation are conjugate, as per the in the quadratic formula =.