enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pivot element - Wikipedia

    en.wikipedia.org/wiki/Pivot_element

    A pivot position in a matrix, A, is a position in the matrix that corresponds to a row–leading 1 in the reduced row echelon form of A. Since the reduced row echelon form of A is unique, the pivot positions are uniquely determined and do not depend on whether or not row interchanges are performed in the reduction process.

  3. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    A matrix is in row echelon form if . All rows having only zero entries are at the bottom. [1]The leading entry (that is, the left-most nonzero entry) of every nonzero row, called the pivot, is on the right of the leading entry of every row above.

  4. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    A is column-equivalent to the n-by-n identity matrix I n. A has n pivot positions. A has full rank: rank A = n. A has a trivial kernel: ker(A) = {0}. The linear transformation mapping x to Ax is bijective; that is, the equation Ax = b has exactly one solution for each b in K n. (Here, "bijective" can equivalently be replaced with "injective" or ...

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  6. Smith normal form - Wikipedia

    en.wikipedia.org/wiki/Smith_normal_form

    In mathematics, the Smith normal form (sometimes abbreviated SNF [1]) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square ...

  7. Partial inverse of a matrix - Wikipedia

    en.wikipedia.org/wiki/Partial_inverse_of_a_matrix

    In linear algebra and statistics, the partial inverse of a matrix is an operation related to Gaussian elimination which has applications in numerical analysis and statistics. It is also known by various authors as the principal pivot transform, or as the sweep, gyration, or exchange operator.

  8. Givens rotation - Wikipedia

    en.wikipedia.org/wiki/Givens_rotation

    A Givens rotation acting on a matrix from the left is a row operation, moving data between rows but always within the same column. Unlike the elementary operation of row-addition, a Givens rotation changes both of the rows addressed by it.

  9. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    With respect to an n-dimensional matrix, an n+1-dimensional matrix can be described as an augmented matrix. In the physical sciences , an active transformation is one which actually changes the physical position of a system , and makes sense even in the absence of a coordinate system whereas a passive transformation is a change in the ...