Search results
Results from the WOW.Com Content Network
Memory-mapped I/O is preferred in IA-32 and x86-64 based architectures because the instructions that perform port-based I/O are limited to one register: EAX, AX, and AL are the only registers that data can be moved into or out of, and either a byte-sized immediate value in the instruction or a value in register DX determines which port is the source or destination port of the transfer.
The main difference between System V shared memory (shmem) and memory mapped I/O (mmap) is that System V shared memory is persistent: unless explicitly removed by a process, it is kept in memory and remains available until the system is shut down. mmap'd memory is not persistent between application executions (unless it is backed by a file).
Memory-mapped I/O, an alternative to port I/O; a communication between CPU and peripheral device using the same instructions, and same bus, as between CPU and memory; Virtual memory, technique which gives an application program the impression that it has contiguous working memory, while in fact it is physically fragmented and may even overflow ...
A memory-mapped file is a segment of virtual memory [1] that has been assigned a direct byte-for-byte correlation with some portion of a file or file-like resource. This resource is typically a file that is physically present on disk, but can also be a device, shared memory object, or other resource that an operating system can reference through a file descriptor.
Due to the higher speeds of RAM compared to disk storage, tmpfs allows cache to be much faster when stored in one, leading to a more efficient overall system, though operating systems with a page cache will see less benefit as recently-used file pages will remain in-memory if free memory is sufficient. Since RAM is cleared upon reboot, tmpfs ...
(See memory-mapped file.) The virtual memory subsystem is then made aware that pages with that region of memory need to be filled on demand if and when program execution actually hits those areas of unfilled memory. This may mean parts of a program's code are not actually copied into memory until they are actually used, and unused code may ...
Programmed input–output (also programmable input/output, programmed input/output, programmed I/O, PIO) is a method of data transmission, via input/output (I/O), between a central processing unit (CPU) and a peripheral device, [1] such as a Parallel ATA storage device. Each data item transfer is initiated by an instruction in the program ...
When reading from standard program storage, there are no side-effects due to the order of memory read operations. In embedded system programming, it is very common to have memory-mapped I/O where reads and writes to memory trigger I/O operations, or changes to the processor's operational mode, which are highly visible side effects. For the ...