Search results
Results from the WOW.Com Content Network
This change gives the following algorithm (for a zero-based array). -- To shuffle an array a of n elements (indices 0..n-1): for i from n−1 down to 1 do j ← random integer such that 0 ≤ j ≤ i exchange a[j] and a[i] An equivalent version which shuffles the array in the opposite direction (from lowest index to highest) is:
The simplest form goes through the whole list each time: procedure cocktailShakerSort(A : list of sortable items) is do swapped := false for each i in 0 to length(A) − 1 do: if A[i] > A[i + 1] then // test whether the two elements are in the wrong order swap(A[i], A[i + 1]) // let the two elements change places swapped := true end if end for if not swapped then // we can exit the outer loop ...
Recursively divide the list into sublists of (roughly) equal length, until each sublist contains only one element, or in the case of iterative (bottom up) merge sort, consider a list of n elements as n sub-lists of size 1. A list containing a single element is, by definition, sorted. Repeatedly merge sublists to create a new sorted sublist ...
The first swap puts element l (the last element) in position 0, and element 0 in position l. The next swap puts the element in position l (where the previous iteration put original element 0) in position 1 and element 1 in position l. In the final iteration, the swap puts element l-1 is in position l, and the element in position l (where the ...
For example, the largest element in the list will win every swap, so it moves to its sorted position on the first pass even if it starts near the beginning. On the other hand, an element that must move toward the beginning of the list cannot move faster than one step per pass, so elements move toward the beginning very slowly.
For example, in a program, two variables may be defined thus (in pseudocode): data_item x := 1 data_item y := 0 swap (x, y); After swap() is performed, x will contain the value 0 and y will contain 1; their values have been exchanged.
It functions by comparing all odd/even indexed pairs of adjacent elements in the list and, if a pair is in the wrong order (the first is larger than the second) the elements are switched. The next step repeats this for even/odd indexed pairs (of adjacent elements). Then it alternates between odd/even and even/odd steps until the list is sorted.
2-opt. In optimization, 2-opt is a simple local search algorithm for solving the traveling salesman problem. The 2-opt algorithm was first proposed by Croes in 1958, [1] although the basic move had already been suggested by Flood. [2] The main idea behind it is to take a route that crosses over itself and reorder it so that it does not.