Search results
Results from the WOW.Com Content Network
Polarized light microscopy can mean any of a number of optical microscopy techniques involving polarized light. Simple techniques include illumination of the sample with polarized light. Directly transmitted light can, optionally, be blocked with a polariser oriented at 90 degrees to the illumination.
By recording the attenuation of light for various wavelengths, an absorption spectrum can be obtained. In physics , absorption of electromagnetic radiation is how matter (typically electrons bound in atoms ) takes up a photon 's energy —and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy ).
Without oil, light waves reflect off the slide specimen through the glass cover slip, through the air, and into the microscope lens (see the colored figure to the right). Unless a wave comes out at a 90-degree angle, it bends when it hits a new substance, the amount of bend depending on the angle. This distorts the image.
The wavelength of visible light waves varies between 400 and 700 nm, but the term "light" is also often applied to infrared (0.7–300 μm) and ultraviolet radiation (10–400 nm). The wave model can be used to make predictions about how an optical system will behave without requiring an explanation of what is "waving" in what medium.
The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century.
A two-photon microscope is also a laser-scanning microscope, but instead of UV, blue or green laser light, a pulsed infrared laser is used for excitation. Only in the tiny focus of the laser is the intensity high enough to generate fluorescence by two-photon excitation , which means that no out-of-focus fluorescence is generated, and no pinhole ...
When light waves travel through a medium other than a vacuum, interaction with the medium causes the wave amplitude and phase to change in a manner dependent on properties of the medium. Changes in amplitude (brightness) arise from the scattering and absorption of light, which is often wavelength-dependent and may give rise to colors.
The dispersion of light by glass prisms is used to construct spectrometers and spectroradiometers. However, in lenses, dispersion causes chromatic aberration, an undesired effect that may degrade images in microscopes, telescopes, and photographic objectives. The phase velocity v of a wave in a given uniform medium is given by