Search results
Results from the WOW.Com Content Network
The wavelength of visible light waves varies between 400 and 700 nm, but the term "light" is also often applied to infrared (0.7–300 μm) and ultraviolet radiation (10–400 nm). The wave model can be used to make predictions about how an optical system will behave without requiring an explanation of what is "waving" in what medium.
Without oil, light waves reflect off the slide specimen through the glass cover slip, through the air, and into the microscope lens (see the colored figure to the right). Unless a wave comes out at a 90-degree angle, it bends when it hits a new substance, the amount of bend depending on the angle. This distorts the image.
A two-photon microscope is also a laser-scanning microscope, but instead of UV, blue or green laser light, a pulsed infrared laser is used for excitation. Only in the tiny focus of the laser is the intensity high enough to generate fluorescence by two-photon excitation , which means that no out-of-focus fluorescence is generated, and no pinhole ...
The light path of a bright-field microscope is extremely simple; no additional components are required beyond the normal light-microscope setup. The light path begins at the illuminator or the light source on the base of the microscope. Often a halogen lamp is used. The light travels through the objective lens into the ocular lens, through ...
The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century.
By recording the attenuation of light for various wavelengths, an absorption spectrum can be obtained. In physics , absorption of electromagnetic radiation is how matter (typically electrons bound in atoms ) takes up a photon 's energy —and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy ).
Light field microscopy (LFM) is a scanning-free 3-dimensional (3D) microscopic imaging method based on the theory of light field.This technique allows sub-second (~10 Hz) large volumetric imaging ([~0.1 to 1 mm] 3) with ~1 μm spatial resolution in the condition of weak scattering and semi-transparence, which has never been achieved by other methods.
The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications. Radio waves, at the low-frequency end of the spectrum, have the lowest photon energy and the longest wavelengths—thousands of kilometers, or more.