enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multinomial theorem - Wikipedia

    en.wikipedia.org/wiki/Multinomial_theorem

    The sum is taken over all combinations of nonnegative integer indices k 1 through k m such that the sum of all k i is n. That is, for each term in the expansion, the exponents of the x i must add up to n. [1] [a] In the case m = 2, this statement reduces to that of the binomial theorem. [1]

  3. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    If α is a nonnegative integer n, then all terms with k > n are zero, [5] and the infinite series becomes a finite sum, thereby recovering the binomial formula. However, for other values of α , including negative integers and rational numbers, the series is really infinite.

  4. Central binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Central_binomial_coefficient

    The central binomial coefficients give the number of possible number of assignments of n-a-side sports teams from 2n players, taking into account the playing area side. The central binomial coefficient () is the number of arrangements where there are an equal number of two types of objects.

  5. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

  6. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    Suppose one wishes to calculate Pr(X ≤ 8) for a binomial random variable X. If Y has a distribution given by the normal approximation, then Pr( X ≤ 8) is approximated by Pr( Y ≤ 8.5) . The addition of 0.5 is the continuity correction; the uncorrected normal approximation gives considerably less accurate results.

  7. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    This sum can be found quickly by taking the number n of terms being added (here 5), multiplying by the sum of the first and last number in the progression (here 2 + 14 = 16), and dividing by 2: (+) In the case above, this gives the equation:

  8. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    A method similar to Vieta's formula can be found in the work of the 12th century Arabic mathematician Sharaf al-Din al-Tusi. It is plausible that the algebraic advancements made by Arabic mathematicians such as al-Khayyam, al-Tusi, and al-Kashi influenced 16th-century algebraists, with Vieta being the most prominent among them.

  9. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    A summation method that is linear and stable cannot sum the series 1 + 2 + 3 + ⋯ to any finite value. (Stable means that adding a term at the beginning of the series increases the sum by the value of the added term.) This can be seen as follows. If + + + =, then adding 0 to both sides gives