enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0. We can represent these two lines in line coordinates as U 1 = (a 1, b 1, c 1) and U 2 = (a 2, b 2, c 2). The intersection P′ of two lines is then simply given by [4]

  3. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    Second, if a transversal intersects two lines so that interior angles on the same side of the transversal are supplementary, then the lines are parallel. These follow from the previous proposition by applying the fact that opposite angles of intersecting lines are equal (Prop. 15) and that adjacent angles on a line are supplementary (Prop. 13).

  4. Intercept theorem - Wikipedia

    en.wikipedia.org/wiki/Intercept_theorem

    intercept theorem with a pair of intersecting lines intercept theorem with more than two lines. The first two statements remain true if the two rays get replaced by two lines intersecting in . In this case there are two scenarios with regard to , either it lies between the 2 parallels (X figure) or it does not (V figure).

  5. Geometrical-optical illusions - Wikipedia

    en.wikipedia.org/wiki/Geometrical-optical_illusions

    The widely accepted interpretation of, e.g. the Poggendorff and Hering illusions as manifestation of expansion of acute angles at line intersections, is an example of successful implementation of a "bottom-up," physiological explanation of a geometrical–optical illusion. Ponzo illusion in a purely schematic form and, below, with perspective clues

  6. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    Given a line a and two distinct intersecting lines m and n, each different from a, there exists a line g which intersects a and m, but not n. The splitting of the parallel postulate into the conjunction of these incidence-geometric axioms is possible only in the presence of absolute geometry. [30]

  7. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the lineline intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).

  8. Topological geometry - Wikipedia

    en.wikipedia.org/wiki/Topological_Geometry

    Topological geometry deals with incidence structures consisting of a point set and a family of subsets of called lines or circles etc. such that both and carry a topology and all geometric operations like joining points by a line or intersecting lines are continuous.

  9. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    A convex quadrilateral is ex-tangential if and only if there are six concurrent angles bisectors: the internal angle bisectors at two opposite vertex angles, the external angle bisectors at the other two vertex angles, and the external angle bisectors at the angles formed where the extensions of opposite sides intersect.