enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kempner function - Wikipedia

    en.wikipedia.org/wiki/Kempner_function

    In number theory, the Kempner function [1] is defined for a given positive integer to be the smallest number such that divides the factorial!. For example, the number 8 {\displaystyle 8} does not divide 1 ! {\displaystyle 1!} , 2 ! {\displaystyle 2!} , or 3 ! {\displaystyle 3!} , but does divide 4 ! {\displaystyle 4!} , so S ( 8 ) = 4 ...

  3. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for

  4. Superfactorial - Wikipedia

    en.wikipedia.org/wiki/Superfactorial

    Just as the factorials can be continuously interpolated by the gamma function, the superfactorials can be continuously interpolated by the Barnes G-function. [2]According to an analogue of Wilson's theorem on the behavior of factorials modulo prime numbers, when is an odd prime number ()!!

  5. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    [39] [40] The factorial number system is a mixed radix notation for numbers in which the place values of each digit are factorials. [ 41 ] Factorials are used extensively in probability theory , for instance in the Poisson distribution [ 42 ] and in the probabilities of random permutations . [ 43 ]

  6. Bhargava factorial - Wikipedia

    en.wikipedia.org/wiki/Bhargava_factorial

    The factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example, 5! = 5×4×3×2×1 = 120. By convention, the value of 0! is defined as 1. This classical factorial function appears prominently in many theorems in number theory. The following are a few of these theorems. [1]

  7. Factorion - Wikipedia

    en.wikipedia.org/wiki/Factorion

    Let be a natural number. For a base >, we define the sum of the factorials of the digits [5] [6] of , :, to be the following: ⁡ = =!. where = ⌊ ⁡ ⌋ + is the number of digits in the number in base , ! is the factorial of and

  8. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    The full formula, together with precise estimates of its error, can be derived as follows. Instead of approximating !, one considers its natural logarithm, as this is a slowly varying function: ⁡ (!) = ⁡ + ⁡ + + ⁡.

  9. Factorial experiment - Wikipedia

    en.wikipedia.org/wiki/Factorial_experiment

    Designed experiments with full factorial design (left), response surface with second-degree polynomial (right) In statistics, a full factorial experiment is an experiment whose design consists of two or more factors, each with discrete possible values or "levels", and whose experimental units take on all possible combinations of these levels across all such factors.