enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discriminant - Wikipedia

    en.wikipedia.org/wiki/Discriminant

    In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic ...

  3. Discriminant of an algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Discriminant_of_an...

    The discriminant of K is 49 = 7 2. Accordingly, the volume of the fundamental domain is 7 and K is only ramified at 7. In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field.

  4. Linear discriminant analysis - Wikipedia

    en.wikipedia.org/wiki/Linear_discriminant_analysis

    Linear discriminant analysis (LDA), normal discriminant analysis (NDA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or events.

  5. Minkowski's bound - Wikipedia

    en.wikipedia.org/wiki/Minkowski's_bound

    Let D be the discriminant of the field, n be the degree of K over , and = be the number of complex embeddings where is the number of real embeddings.Then every class in the ideal class group of K contains an integral ideal of norm not exceeding Minkowski's bound

  6. Vandermonde matrix - Wikipedia

    en.wikipedia.org/wiki/Vandermonde_matrix

    Another way to derive the above formula is by taking a limit of the Vandermonde matrix as the 's approach each other. For example, to get the case of x 1 = x 2 {\displaystyle x_{1}=x_{2}} , take subtract the first row from second in the original Vandermonde matrix, and let x 2 → x 1 {\displaystyle x_{2}\to x_{1}} : this yields the ...

  7. Different ideal - Wikipedia

    en.wikipedia.org/wiki/Different_ideal

    Its discriminant as quadratic form need not be +1 (in fact this happens only for the case K = Q). Define the inverse different or codifferent [ 3 ] [ 4 ] or Dedekind's complementary module [ 5 ] as the set I of x ∈ K such that tr( xy ) is an integer for all y in O K , then I is a fractional ideal of K containing O K .

  8. Discriminative model - Wikipedia

    en.wikipedia.org/wiki/Discriminative_model

    Linear discriminant analysis (LDA), provides an efficient way of eliminating the disadvantage we list above. As we know, the discriminative model needs a combination of multiple subtasks before classification, and LDA provides appropriate solution towards this problem by reducing dimension.

  9. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The characteristic equation for a rotation is a quadratic equation with discriminant = (⁡), which is a negative number whenever θ is not an integer multiple of 180°. Therefore, except for these special cases, the two eigenvalues are complex numbers, cos ⁡ θ ± i sin ⁡ θ {\displaystyle \cos \theta \pm i\sin \theta } ; and all ...