Search results
Results from the WOW.Com Content Network
The general definition of a qubit as the quantum state of a two-level quantum system.In quantum computing, a qubit (/ ˈ k juː b ɪ t /) or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device.
A logical qubit specifies how a single qubit should behave in a quantum algorithm, subject to quantum logic operations which can be built out of quantum logic gates. However, issues in current technologies preclude single two-state quantum systems , which can be used as physical qubits, from reliably encoding and retaining this information for ...
An example is a qubit used in quantum information processing. A qubit state is most generally a superposition of the basis states | 0 {\displaystyle |0\rangle } and | 1 {\displaystyle |1\rangle } :
Just as the bit is the basic concept of classical information theory, the qubit is the fundamental unit of quantum information.The same term qubit is used to refer to an abstract mathematical model and to any physical system that is represented by that model.
Qubit A qubit (/ ˈ k juː b ɪ t /) or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum
Example: The qubit is measured, and the result of this measurement is a Boolean value, which is consumed by the classical computer. If ϕ {\displaystyle \phi } measures to 1, then the classical computer tells the quantum computer to apply the U gate on ψ {\displaystyle \psi } .
An n-qubit (reversible) quantum gate is a unitary mapping U from the space H QB(n) of n-qubit registers onto itself. Typically, we are only interested in gates for small values of n . A reversible n -bit classical logic gate gives rise to a reversible n -bit quantum gate as follows: to each reversible n -bit logic gate f corresponds a quantum ...
Quantum decoherence can occur when one qubit from a maximally entangled bell state is transmitted across a quantum network. Entanglement purification allows for the creation of nearly maximally entangled qubits from a large number of arbitrary weakly entangled qubits, and thus provides additional protection against errors.