enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lasso (statistics) - Wikipedia

    en.wikipedia.org/wiki/Lasso_(statistics)

    In statistics and machine learning, lasso (least absolute shrinkage and selection operator; also Lasso, LASSO or L1 regularization) [1] is a regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the resulting statistical model.

  3. Phi coefficient - Wikipedia

    en.wikipedia.org/wiki/Phi_coefficient

    In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or r φ) is a measure of association for two binary variables.. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975.

  4. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...

  5. Krippendorff's alpha - Wikipedia

    en.wikipedia.org/wiki/Krippendorff's_alpha

    Krippendorff's alpha coefficient, [1] named after academic Klaus Krippendorff, is a statistical measure of the agreement achieved when coding a set of units of analysis.. Since the 1970s, alpha has been used in content analysis where textual units are categorized by trained readers, in counseling and survey research where experts code open-ended interview data into analyzable terms, in ...

  6. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  7. Standardized coefficient - Wikipedia

    en.wikipedia.org/wiki/Standardized_coefficient

    Standardization of the coefficient is usually done to answer the question of which of the independent variables have a greater effect on the dependent variable in a multiple regression analysis where the variables are measured in different units of measurement (for example, income measured in dollars and family size measured in number of individuals).

  8. Terrible NFL defenses that could help you during the fantasy ...

    www.aol.com/sports/terrible-nfl-defenses-could...

    Jacksonville Jaguars - 7% (at TEN, NYJ, at LV, TEN). Yeah, um … not sure I’d actually pull the trigger on a Jaguars add. Feels like that’s one or two steps beyond recklessness.

  9. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    Filter feature selection is a specific case of a more general paradigm called structure learning.Feature selection finds the relevant feature set for a specific target variable whereas structure learning finds the relationships between all the variables, usually by expressing these relationships as a graph.